Borrowing from a Bigtech Platform

Jian Li¹ Stefano Pegoraro²

 1 Columbia Business School 2 University of Notre Dame, Mendoza College of Business

FDIC Bank Research Conference September 29, 2023

Bigtech vs Fintech Firms

⋆ Bigtech

- "Technology companies with an established presence in the market for digital services" (Frost et al., 2019; Stultz, 2019)
- Amazon, Alibaba, Tencent

- Fintech
 - "Specialized firm that challenges a specific product line of banks' (Stultz, 2019)
 - Affirm, CashApp, Robinhood

- * Bigtech credit booming globally (Cornelli et al., 2021)
 - \$572bn in 2019 vs fintech's \$223bn non-mortgage credit

Bigtech vs Fintech Firms

⋆ Bigtech

Introduction

- "Technology companies with an established presence in the market for digital services" (Frost et al., 2019; Stultz, 2019)
- Amazon, Alibaba, Tencent

- Fintech
 - "Specialized firm that challenges a specific product line of banks" (Stultz, 2019)
 - Affirm, CashApp, Robinhood

- * Bigtech credit booming globally (Cornelli et al., 2021)
 - \$572bn in 2019 vs fintech's \$223bn non-mortgage credit

Bigtech vs Fintech Firms

- ⋆ Bigtech
 - "Technology companies with an established presence in the market for digital services" (Frost et al., 2019; Stultz, 2019)
 - Amazon, Alibaba, Tencent

- Fintech
 - "Specialized firm that challenges a specific product line of banks" (Stultz, 2019)
 - Affirm, CashApp, Robinhood

- ★ Bigtech credit booming globally (Cornelli et al., 2021)
 - \$572bn in 2019 vs fintech's \$223bn non-mortgage credit

- Platforms lend to merchants
 - Payments: PayPal, Stripe, Toast
 - Marketplaces: Amazon, Alibaba, Doordash

- Platforms lend to merchants
 - Payments: PayPal, Stripe, Toast
 - Marketplaces: Amazon, Alibaba, Doordash
- Short-term, uncollateralized, small business loans
 - PayPal: "\$1,000 to \$150,000 for first-time borrowers"
 - Doordash: "typically \$5,000 to \$15,000 or more"

- Platforms lend to merchants
 - Payments: PayPal, Stripe, Toast
 - Marketplaces: Amazon, Alibaba, Doordash
- Short-term, uncollateralized, small business loans
 - PayPal: "\$1,000 to \$150,000 for first-time borrowers"
 - Doordash: "typically \$5,000 to \$15,000 or more"
- No (or minimal) conventional credit checks
 - Platforms look at revenues and transactions.
 - PayPal: "Your loan is based primarily on your PayPal account history, meaning no credit check is required"
- Revenue-based repayment

- Platforms lend to merchants.
 - Payments: PayPal, Stripe, Toast
 - Marketplaces: Amazon, Alibaba, Doordash
- Short-term, uncollateralized, small business loans
 - PayPal: "\$1,000 to \$150,000 for first-time borrowers"
 - Doordash: "typically \$5,000 to \$15,000 or more"
- No (or minimal) conventional credit checks
 - Platforms look at revenues and transactions.
 - PayPal: "Your loan is based primarily on your PayPal account history, meaning no credit check is required"
- Revenue-based repayment
 - Higher transaction fees used as loan repayment
 - PayPal: "You repay with a share of your PayPal sales"

This Paper

★ Model that explains these patterns

- A bigtech platform controls access to a marketplace or payment system
 - Merchants need to pay required fees or sell elsewhere at a loss

- Increased fees for borrowing merchants
 - Enforce partial loan repayment
 - * Banks do not control access to a source of revenues

This Paper

★ Model that explains these patterns

- A bigtech platform controls access to a marketplace or payment system
 - Merchants need to pay required fees or sell elsewhere at a loss

- Increased fees for borrowing merchants
 - Enforce partial loan repayment
 - * Banks do not control access to a source of revenues

This Paper

⋆ Model that explains these patterns

- A bigtech platform controls access to a marketplace or payment system
 - Merchants need to pay required fees or sell elsewhere at a loss

- ★ Increased fees for borrowing merchants
 - Enforce partial loan repayment
 - * Banks do not control access to a source of revenues

This Paper

⋆ Model that explains these patterns

- A bigtech platform controls access to a marketplace or payment system
 - Merchants need to pay required fees or sell elsewhere at a loss

- ★ Increased fees for borrowing merchants
 - Enforce partial loan repayment
 - * Banks do not control access to a source of revenues

Questions

Q: What is the advantage of a platform as a lender?

- A: The platform controls access to a marketplace
- * Better enforcement of loan repayments

- Q: What are the equilibrium implications of its competition with banks?
 - In equilibrium, menu of contracts with different enforcement.
 - The platform benefits from advantageous screening at the expense of banks

- Q: How does welfare change when it enters the credit market?
 - A: Improves for merchants rationed by banks
 - A: Possibly declines when competing with banks
 - Negative effects of equilibrium screening

Questions

Q: What is the advantage of a platform as a lender?

Q: What are the equilibrium implications of its competition with banks?

Questions

Q: What is the advantage of a platform as a lender?

- A: The platform controls access to a marketplace
- * Better enforcement of loan repayments

Q: What are the equilibrium implications of its competition with banks?

- In equilibrium, menu of contracts with different enforcement
- The platform benefits from advantageous screening at the expense of banks

Q: How does welfare change when it enters the credit market?

- A: Improves for merchants rationed by banks
- A: Possibly declines when competing with banks
 - Negative effects of equilibrium screening

Questions

- Q: What is the advantage of a platform as a lender?
 - A: The platform controls access to a marketplace
 - ⋆ Better enforcement of loan repayments

- Q: What are the equilibrium implications of its competition with banks?
 - In equilibrium, menu of contracts with different enforcement
 - The platform benefits from advantageous screening at the expense of banks

- Q: How does welfare change when it enters the credit market?
 - A: Improves for merchants rationed by banks
 - A: Possibly declines when competing with banks
 - Negative effects of equilibrium screening

Questions

- Q: What is the advantage of a platform as a lender?
 - A: The platform controls access to a marketplace
 - * Better enforcement of loan repayments

- Q: What are the equilibrium implications of its competition with banks?
 - In equilibrium, menu of contracts with different enforcement
 - * The platform benefits from advantageous screening at the expense of banks

- Q: How does welfare change when it enters the credit market?
 - A: Improves for merchants rationed by banks
 - A: Possibly declines when competing with banks
 - Negative effects of equilibrium screening

Questions

- Q: What is the advantage of a platform as a lender?
 - A: The platform controls access to a marketplace
 - * Better enforcement of loan repayments

- Q: What are the equilibrium implications of its competition with banks?
 - In equilibrium, menu of contracts with different enforcement
 - * The platform benefits from advantageous screening at the expense of banks

- Q: How does welfare change when it enters the credit market?
 - A: Improves for merchants rationed by banks
 - A: Possibly declines when competing with banks
 - Negative effects of equilibrium screening

Contribution

* Enforcement as a key advantage of a bigtech platform and its equilibrium implications

- Not only information, convenience, and regulation
- cf. Boualam and Yoo (2022), Ghosh, Vallee, and Zeng (2021), He, Huang, and Zhou (2020), Huang (2021), Parlour, Rajan and Zhu (2020)
- - In equilibrium, lower surplus extracted from enforcement
- - A platform can relax financial constraints

Contribution

* Enforcement as a key advantage of a bigtech platform and its equilibrium implications

- Not only information, convenience, and regulation
- cf. Boualam and Yoo (2022), Ghosh, Vallee, and Zeng (2021), He, Huang, and Zhou (2020), Huang (2021), Parlour, Rajan and Zhu (2020)
- * Superior information may lower the platform's profits
 - In equilibrium, lower surplus extracted from enforcement
 - cf. Broecker (1990), Goldstein, Huang, and Yang (2022), Hauswald and Marquez (2003), Hausch (1987), He, Huang, and Zhou (2023), Kagel and Levin (1999), Milgrom and Weber, (1982)
- - A platform can relax financial constraints

Contribution

- * Enforcement as a key advantage of a bigtech platform and its equilibrium implications
 - Not only information, convenience, and regulation
 - cf. Boualam and Yoo (2022), Ghosh, Vallee, and Zeng (2021), He, Huang, and Zhou (2020), Huang (2021), Parlour, Rajan and Zhu (2020)
- * Superior information may lower the platform's profits
 - In equilibrium, lower surplus extracted from enforcement
 - cf. Broecker (1990), Goldstein, Huang, and Yang (2022), Hauswald and Marquez (2003), Hausch (1987), He, Huang, and Zhou (2023), Kagel and Levin (1999), Milgrom and Weber, (1982)
- ★ Credit with limited commitment and industrial organization
 - A platform can relax financial constraints
 - cf. Alvarez and Jermann (2000), Kehoe and Levine (1993), Kocherlakota (1996), Ligon, Thomas, and Worrall (2002)
 - cf. Armstrong (2006), Bouvard, Casamatta, Xiong (2022), Jullien, Pavan, and Rysman (2021), Rochet and Tirole (2002), Weyl (2010

Set-Up Benchmark Models Equilibrium with Competition Information Conclu

Players

- Merchant
 - Needs to borrow one unit of capital to produce for two periods
 - Sells goods on or off the platform

- Competitive banks
 - Lend to merchant at rate R_B
 - Cost of capital: R_D

- Platform
 - Provides marketplace or payment service
 - Lends to merchant at rate R_P
 - Cost of capital: $\bar{R} \geq R_D$

Players

- Merchant
 - Needs to borrow one unit of capital to produce for two periods
 - Sells goods on or off the platform

- Competitive banks
 - Lend to merchant at rate R_B
 - Cost of capital: R_D

- Platform
 - Provides marketplace or payment service
 - Lends to merchant at rate R_P
 - Cost of capital: $\bar{R} > R_D$

Players

- Merchant
 - Needs to borrow one unit of capital to produce for two periods
 - Sells goods on or off the platform

- Competitive banks
 - Lend to merchant at rate R_B
 - Cost of capital: R_D

- Platform
 - Provides marketplace or payment service
 - Lends to merchant at rate R_P
 - Cost of capital: $\bar{R} \geq R_D$

- Merchant's revenues on the platform: c_{θ}
- Revenues off the platform: $(1-\eta)c$
 - Relative revenues: $\eta \leq 1$
 - Value of the platform for the merchant

- Merchant's transaction fees: fc_{θ}
 - We focus on merchants joining the platform: $\eta \geq f$

- We study lending after transaction fees are set
 - Platform design taken as exogenous

- Merchant's revenues on the platform: c_{θ}
- ullet Revenues off the platform: $(1-\eta)c_{ heta}$
 - Relative revenues: $\eta \leq 1$
 - Value of the platform for the merchant
- Merchant's transaction fees: fc_{θ}
 - We focus on merchants joining the platform: $\eta \geq f$
- We study lending after transaction fees are set
 - Platform design taken as exogenous

- Merchant's revenues on the platform: c_{θ}
- Revenues off the platform: $(1-\eta)c_{\theta}$
 - Relative revenues: $\eta \leq 1$
 - Value of the platform for the merchant
- Merchant's transaction fees: fc_{θ}
 - We focus on merchants joining the platform: $\eta \geq f$
- We study lending after transaction fees are set
 - Platform design taken as exogenous

- Merchant's revenues on the platform: c_{θ}
- Revenues off the platform: $(1-\eta)c_{\theta}$
 - Relative revenues: $\eta \leq 1$
 - Value of the platform for the merchant

- Merchant's transaction fees: fc_{θ}
 - We focus on merchants joining the platform: $\eta \geq f$
- We study lending after transaction fees are set
 - Platform design taken as exogenous

- t = 0: Lending
 - The merchant borrows from a bank or the platform
 - Loan due at t=1
- Between 0 and 1: First production period
 - The merchant produces revenues c_{θ}
 - Pays fees to the platform (if selling on the marketplace)
- t = 1: Strategic default
 - Repay the loan and continue production or default and abscond
- Between 1 and 2: Second production period (if not defaulted)
 - Same as the first production period
- t = 2: Game ends

- t = 0: Lending
 - The merchant borrows from a bank or the platform
 - Loan due at t=1
- Between 0 and 1: First production period
 - The merchant produces revenues c_{θ}
 - Pays fees to the platform (if selling on the marketplace)
- t = 1: Strategic default
 - Repay the loan and continue production or default and abscond
- Between 1 and 2: Second production period (if not defaulted)
 - Same as the first production period
- t = 2: Game ends

Set-Up Benchmark Models Equilibrium with Competition Information Con-

- t = 0: Lending
 - The merchant borrows from a bank or the platform
 - Loan due at t=1
- Between 0 and 1: First production period
 - The merchant produces revenues c_{θ}
 - Pays fees to the platform (if selling on the marketplace)
- t = 1: Strategic default
 - Repay the loan and continue production or default and abscond
- Between 1 and 2: Second production period (if not defaulted)
 - Same as the first production period
- t = 2: Game ends

- t = 0: Lending
 - The merchant borrows from a bank or the platform
 - Loan due at t=1
- Between 0 and 1: First production period
 - The merchant produces revenues c_{θ}
 - Pays fees to the platform (if selling on the marketplace)
- t = 1: Strategic default
 - Repay the loan and continue production or default and abscond
- Between 1 and 2: Second production period (if not defaulted)
 - Same as the first production period
- t=2: Game ends

- t = 0: Lending
 - The merchant borrows from a bank or the platform
 - Loan due at t=1
- Between 0 and 1: First production period
 - The merchant produces revenues c_{θ}
 - Pays fees to the platform (if selling on the marketplace)
- t = 1: Strategic default
 - Repay the loan and continue production or default and abscond
- Between 1 and 2: Second production period (if not defaulted)
 - Same as the first production period
- t=2: Game ends

Financing Frictions

* Asymmetric information and moral hazard

- Asymmetric information
 - Merchant is privately informed about her future revenues c_{θ}

$$c_H > c_I$$

- Credit quality $p \in [0,1]$: probability the borrower is high-revenue
- Moral hazard as limited commitment
 - Strategic default if remaining loan balance exceeds future net revenues
 - Low-revenue merchant more likely to default
- Frictions in equilibrium

Financing Frictions

- * Asymmetric information and moral hazard
- Asymmetric information
 - Merchant is privately informed about her future revenues c_{θ}

$$c_H > c_L$$

- Credit quality $p \in [0,1]$: probability the borrower is high-revenue
- Moral hazard as limited commitment
 - Strategic default if remaining loan balance exceeds future net revenues
 - Low-revenue merchant more likely to default
- Frictions in equilibrium
 - The low-revenue merchant defaults on banks: $c_L < R_D$
 - The high-revenue merchant does not default on banks if rates are low

Financing Frictions

- * Asymmetric information and moral hazard
- Asymmetric information
 - Merchant is privately informed about her future revenues c_{θ}

$$c_H > c_L$$

- Credit quality $p \in [0,1]$: probability the borrower is high-revenue
- Moral hazard as limited commitment
 - Strategic default if remaining loan balance exceeds future net revenues
 - Low-revenue merchant more likely to default
- Frictions in equilibrium
 - The low-revenue merchant defaults on banks: $c_L < R_D$
 - The high-revenue merchant does not default on banks if rates are low

Financing Frictions

- * Asymmetric information and moral hazard
- Asymmetric information
 - Merchant is privately informed about her future revenues c_{θ}

$$c_H > c_L$$

- Credit quality $p \in [0,1]$: probability the borrower is high-revenue
- Moral hazard as limited commitment
 - Strategic default if remaining loan balance exceeds future net revenues
 - Low-revenue merchant more likely to default
- Frictions in equilibrium
 - The low-revenue merchant defaults on banks: $c_L < R_D$
 - The high-revenue merchant does not default on banks if rates are low enough: $(1-f)c_H > R_D$

Repayment Fees and Enforcement

- The platform charges an additional fee f_P as partial loan repayment
 - Paid when the merchant generates sales, before loan maturity

 \star An optimal response to the risk of strategic default

- * The platform has an advantage in enforcing repayment
 - Based on its control of the marketplace

- Banks cannot exclude merchants from a marketplace
 - Cannot charge repayment fees: $f_B = 0$

Repayment Fees and Enforcement

- ullet The platform charges an additional fee f_P as partial loan repayment
 - Paid when the merchant generates sales, before loan maturity

* An optimal response to the risk of strategic default

- ★ The platform has an advantage in enforcing repayment
 - Based on its control of the marketplace

- Banks cannot exclude merchants from a marketplace
 - Cannot charge repayment fees: $f_B = 0$

oduction **Set-Up** Benchmark Models Equilibrium with Competition Information Conclusion

Repayment Fees and Enforcement

- The platform charges an additional fee f_P as partial loan repayment
 - Paid when the merchant generates sales, before loan maturity

* An optimal response to the risk of strategic default

- ★ The platform has an advantage in enforcing repayment
 - Based on its control of the marketplace

- Banks cannot exclude merchants from a marketplace
 - Cannot charge repayment fees: $f_B = 0$

Repayment Fees and Enforcement

- The platform charges an additional fee f_P as partial loan repayment
 - Paid when the merchant generates sales, before loan maturity

* An optimal response to the risk of strategic default

- ★ The platform has an advantage in enforcing repayment
 - Based on its control of the marketplace

- Banks cannot exclude merchants from a marketplace
 - Cannot charge repayment fees: $f_B = 0$

Limited Commitment and Incentive Compatibility

• IC- θ : The merchant of type θ repays the loan

*
$$R_J \uparrow$$
 if $f_J \uparrow$

$$\underbrace{R_J - f_J c_\theta}_{\text{remaining loan balance}} \leq \underbrace{(1 - f) c_\theta}_{\text{future net revenues}}, \quad J \in \{B, P\}$$

Limited Commitment and Incentive Compatibility

• IC- θ : The merchant of type θ repays the loan

*
$$R_J \uparrow$$
 if $f_J \uparrow$

$$\underbrace{R_J - f_J c_{\theta}}_{\text{remaining loan balance}} \leq \underbrace{(1 - f) c_{\theta}}_{\text{future net revenues}}, \quad J \in \{B, P\}$$

- Repayment fees f_P as optimal solution for the limited-commitment problem
 - * Recover some payment ahead of default

Limited Commitment and Incentive Compatibility

• IC- θ : The merchant of type θ repays the loan

$$\underbrace{R_J \uparrow \text{ if } f_J \uparrow}_{\text{remaining loan balance}} \leq \underbrace{(1-f)c_\theta}_{\text{future net revenues}}, \quad J \in \{B,P\}$$

- Repayment fees f_P as optimal solution for the limited-commitment problem
 - ★ Recover some payment ahead of default
 - * Lower ex-post incentives to default

- PayPal: We'll monitor accounts for unexpected drops in PayPal sales
- IC-f_P: The merchant remains on the platform and pays the fees
 - Always binding

$$f_P$$
 $\leq \underbrace{\eta - f}_{\text{cost of remaining on platform}}$ $\leq \cot f$ leaving the platform

Sale Diversion and Incentive Compatibility

- PayPal: We'll monitor accounts for unexpected drops in PayPal sales volume, and your loan will be in default if you move your sales away from PayPal to avoid repayment
- IC-f_P: The merchant remains on the platform and pays the fees
 - Always binding

$$f_P$$
 $\leq \underbrace{\eta - f}_{\text{cost of remaining on platform}}$ $\leq \cot f$ leaving the platform

- PayPal: We'll monitor accounts for unexpected drops in PayPal sales volume, and your loan will be in default if you move your sales away from PayPal to avoid repayment
- IC-f_P: The merchant remains on the platform and pays the fees
 - Always binding

$$\underbrace{f_P}_{\text{cost of remaining on platform}} \leq \underbrace{\eta - f}_{\text{cost of leaving the platform}}$$

Sale Diversion and Incentive Compatibility

- PayPal: We'll monitor accounts for unexpected drops in PayPal sales volume, and your loan will be in default if you move your sales away from PayPal to avoid repayment
- IC-f_P: The merchant remains on the platform and pays the fees
 - Always binding

$$f_P$$
 $\leq \frac{\eta - f}{\cos t}$ cost of remaining on platform $\cos t \cos t$ of leaving the platform

 \star Better enforcement for merchants with high relative revenues η

Benchmark: Borrowing from Banks Only

- Banks charge a break-even rate $R_B = \frac{R_D}{R}$
- Lend only if high-revenue

$$p \ge \frac{R_D}{(1-f)c_H}$$

Benchmark: Borrowing from Banks Only

- Banks charge a break-even rate $R_B = \frac{R_D}{R}$
- Lend only if high-revenue merchants are willing to repay (IC-H): $\frac{R_D}{R} \leq (1-f)c_H$

$$p \ge \frac{R_D}{(1-f)c_H}$$

Benchmark: Borrowing from Banks Only

- Banks charge a break-even rate $R_B = \frac{R_D}{R}$
- Lend only if high-revenue merchants are willing to repay (IC-H): $\frac{R_D}{R} \leq (1-f)c_H$
- Banks lend based on credit quality

$$p \geq \frac{R_D}{(1-f)c_H}$$

- The platform sets incentive-compatible repayment fees (IC- f_P): $f_P = \eta - f$
- Two options to set R_P as a monopolist
 - Only the good merchant repays (IC-H): $R_P = (1 2f + \eta)c_H$

Revenues =
$$\underbrace{p(1-2f+\eta)c_H + (1-p)(\eta-f)c_L}_{\text{loan}} + \underbrace{[p2c_H + (1-p)c_L]f}_{\text{transactions}}$$

Revenues =
$$\underbrace{(1 - 2f + \eta)c_L}_{\text{loan}} + \underbrace{2[pc_H + (1 - p)c_L]f}_{\text{transactions}}$$

- The platform sets incentive-compatible repayment fees (IC- f_P): $f_P = \eta - f$
- Two options to set R_P as a monopolist
 - Only the good merchant repays (IC-H): $R_P = (1 2f + \eta)c_H$

Both merchants repay (IC-
$$L$$
): $R_P = (1-2f+\eta)c_L$

$$\text{Revenues} = \underbrace{(1-2f+\eta)c_L}_{\text{loan}} + \underbrace{2[pc_H + (1-p)c_L]f}_{\text{transactions}}$$

- The platform sets incentive-compatible repayment fees (IC- f_P): $f_P = \eta - f$
- Two options to set R_P as a monopolist
 - Only the good merchant repays (IC-H): $R_P = (1 2f + \eta)c_H$

Revenues =
$$\underbrace{p(1-2f+\eta)c_H + (1-p)(\eta-f)c_L}_{\text{loan}} + \underbrace{[p2c_H + (1-p)c_L]f}_{\text{transactions}}$$

• Both merchants repay (IC-L): $R_P = (1 - 2f + \eta)c_L$

Revenues =
$$\underbrace{(1 - 2f + \eta)c_L}_{\text{loan}} + \underbrace{2[pc_H + (1 - p)c_L]f}_{\text{transactions}}$$

- The platform sets incentive-compatible repayment fees (IC- f_P): $f_P = \eta - f$
- Two options to set R_P as a monopolist
 - Only the good merchant repays (IC-H): $R_P = (1 2f + \eta)c_H$

Revenues =
$$\underbrace{p(1-2f+\eta)c_H + (1-p)(\eta-f)c_L}_{\text{loan}} + \underbrace{[p2c_H + (1-p)c_L]f}_{\text{transactions}}$$

Both merchants repay (IC-L): $R_P = (1 - 2f + \eta)c_L$

Revenues =
$$\underbrace{(1 - 2f + \eta)c_L}_{\text{loan}} + \underbrace{2[pc_H + (1 - p)c_L]f}_{\text{transactions}}$$

- The platform sets incentive-compatible repayment fees (IC- f_P): $f_P = \eta - f$
- Two options to set R_P as a monopolist
 - Only the good merchant repays (IC-H): $R_P = (1 2f + \eta)c_H$

Revenues =
$$\underbrace{p(1-2f+\eta)c_H + (1-p)(\eta-f)c_L}_{\text{loan}} + \underbrace{[p2c_H + (1-p)c_L]f}_{\text{transactions}}$$

Both merchants repay (IC-L): $R_P = (1 - 2f + \eta)c_L$

Revenues =
$$\underbrace{(1 - 2f + \eta)c_L}_{\text{loan}} + \underbrace{2[pc_H + (1 - p)c_L]f}_{\text{transactions}}$$

The platform lends if

Monopolistic revenues $> \bar{R}$

- $2c_L \geq \bar{R}$
 - IC-L may bind

- $2c_L < \bar{R}$
 - IC-H always binds

- $2c_L \geq \bar{R}$
 - IC-L may bind

- $2c_L < \bar{R}$
 - IC-H always binds

Platform alleviates financial frictions when $\eta \uparrow$

Competition

- Platform and banks compete in the credit market
 - Contemporaneously decide whether to lend and at what rate
 - Merchant picks the best offer

- Contract terms similar to benchmark models
 - Same maturity and repayment fees

- Welfare
 - Compare social welfare to a benchmark where banks are the only lenders

Competition

- Platform and banks compete in the credit market
 - Contemporaneously decide whether to lend and at what rate
 - Merchant picks the best offer

- Contract terms similar to benchmark models
 - Same maturity and repayment fees

- Welfare
 - Compare social welfare to a benchmark where banks are the only lenders

roduction Set-Up Benchmark Models **Equilibrium with Competition** Information Conclusion

Competition

- Platform and banks compete in the credit market
 - Contemporaneously decide whether to lend and at what rate
 - Merchant picks the best offer

- Contract terms similar to benchmark models
 - Same maturity and repayment fees
- Welfare
 - Compare social welfare to a benchmark where banks are the only lenders

Segmentation by Credit Quality

- Only banks lend to high-quality merchants
 - Banks' competitive rate is too low for the platform to beat
 - Welfare \sim
- Only the platform lends to low-quality merchants
 - Welfare ↑
- Competition for intermediate-quality merchants
 - Ambiguous welfare effects
 - The platform lends even who monopolistic revenues $< \bar{R}$ (case C)

Segmentation by Credit Quality

- Only banks lend to high-quality merchants
 - Banks' competitive rate is too low for the platform to beat
 - Welfare \sim
- Only the platform lends to low-quality merchants
 - Welfare ↑
- Competition for intermediate-quality merchants
 - Ambiguous welfare effects
 - The platform lends even who monopolistic revenues $< \bar{R}$ (case C)

Segmentation by Credit Quality

- * Only banks lend to high-quality merchants
 - Banks' competitive rate is too low for the platform to beat
 - Welfare \sim
- ⋆ Only the platform lends to low-quality merchants
 - Welfare ↑
- ★ Competition for intermediate-quality merchants
 - Ambiguous welfare effects
 - The platform lends even when monopolistic revenues $< \bar{R}$ (case C)

- \star The platform benefits from advantageous screening in equilibrium
 - Conditional on observables, the platform lends to a better pool of borrowers than banks
 - The platform extracts rents from banks

- \star Jointly, the platform and banks offer a menu of screening contracts
 - The good merchant picks the lender offering the lowest rate
 - The bad merchant self-selects into bank loans to avoid enforcement

- Banks tighten lending standards
 - * Will deny credit with positive probability
 - * Will increase rates up to $(1-f)c\mu$

- ★ The platform benefits from advantageous screening in equilibrium
 - Conditional on observables, the platform lends to a better pool of horrowers than hanks
- ★ Jointly, the platform and banks offer a menu of screening contracts
 - The good merchant picks the lender offering the lowest rate
 - The bad merchant self-selects into bank loans to avoid enforcement

- ★ The platform benefits from advantageous screening in equilibrium
 - Conditional on observables, the platform lends to a better pool of horrowers than hanks
 - * The platform extracts rents from banks

- * Jointly, the platform and banks offer a menu of screening contracts
 - The good merchant picks the lender offering the lowest rate
 - The bad merchant self-selects into bank loans to avoid enforcement

- ★ The platform benefits from advantageous screening in equilibrium
 - Conditional on observables, the platform lends to a better pool of horrowers than hanks
 - * The platform extracts rents from banks
- ★ Jointly, the platform and banks offer a menu of screening contracts
 - The good merchant picks the lender offering the lowest rate
 - The bad merchant self-selects into bank loans to avoid enforcement

- Banks tighten lending standards
 - * Will deny credit with positive probability
 - * Will increase rates up to $(1-f)c_H$

Why Does the Platform Enter the Credit Market?

- - More income can be credibly pledged to the platform
 - Lower default risk

- - Extract rents from banks

vily Does the Flationii Enter the Credit Market:

- 1. Internalization of fees *f*
 - ★ Relaxes financial constraints

- Enforcement
 - More income can be credibly pledged to the platform
 - Lower default risk
 - Relaxes financial constraints

- 3. Advantageous screening
 - Extract rents from banks
 - * Tightens financial constraints

Why Does the Platform Enter the Credit Market?

- 1. Internalization of fees f
 - ★ Relaxes financial constraints
 - ✓ Good for welfare

- Enforcement
 - More income can be credibly pledged to the platform
 - Lower default risk
 - * Relaxes financial constraints

- 3. Advantageous screening
 - Extract rents from banks
 - * Tightens financial constraints

Why Does the Platform Enter the Credit Market?

- 1. Internalization of fees f
 - * Relaxes financial constraints
 - ✓ Good for welfare.

- Enforcement
 - More income can be credibly pledged to the platform
 - Lower default risk
 - * Relaxes financial constraints

- - Extract rents from banks

Why Does the Platform Enter the Credit Market?

- 1. Internalization of fees f
 - ★ Relaxes financial constraints
 - ✓ Good for welfare

- 2. Enforcement
 - More income can be credibly pledged to the platform
 - Lower default risk
 - * Relaxes financial constraints
 - ✓ Good for welfare

- 3. Advantageous screening
 - Extract rents from banks
 - * Tightens financial constraints

Why Does the Platform Enter the Credit Market?

- 1. Internalization of fees f
 - ★ Relaxes financial constraints
 - ✓ Good for welfare

- 2. Enforcement
 - More income can be credibly pledged to the platform
 - Lower default risk
 - * Relaxes financial constraints
 - ✓ Good for welfare

- 3. Advantageous screening
 - Extract rents from banks
 - * Tightens financial constraints

Why Does the Platform Enter the Credit Market?

- Internalization of fees f
 - * Relaxes financial constraints
 - ✓ Good for welfare

2. Enforcement

- More income can be credibly pledged to the platform
- Lower default risk
- * Relaxes financial constraints
- ✓ Good for welfare

- 3. Advantageous screening
 - Extract rents from banks
 - ★ Tightens financial constraints
 - X Bad for welfare

Borrowing with Competition: Cases

- Cases A and B
 - Monopolistic revenues $\geq \bar{R}$
- Case B
 - Loans satisfying IC-L are profitable: $\bar{R} \leq (1-2f+\eta)c_L$
- Case C
 - The platform lends only because of advantageous screening

Welfare with Direct Competition

Δ Welfare = $-\Delta$ Credit rationing $-\Delta$ Cost of capital + Δ Enforcement

- Case A
 - Cost of capital \uparrow iff $R > R_D$
- - Cost of capital \uparrow iff $\bar{R} > R_D$
 - Enforcement ↑ / ~
- Case C (implies $\bar{R} > R_D$)
 - Credit rationing ↑
 - Cost of capital ↑

Equilibrium with Competition

Welfare with Direct Competition

 Δ Welfare = $-\Delta$ Credit rationing $-\Delta$ Cost of capital + Δ Enforcement

- Case A
 - Cost of capital \uparrow iff $\bar{R} > R_D$
- Case B
 - Cost of capital \uparrow iff $\bar{R} > R_D$
 - Enforcement ↑ / ~
- Case C (implies $\bar{R} > R_D$)
 - Credit rationing ↑
 - Cost of capital ↑

Equilibrium with Competition

Welfare with Direct Competition

 Δ Welfare = $-\Delta$ Credit rationing $-\Delta$ Cost of capital + Δ Enforcement

- Case A
 - Cost of capital \uparrow iff $\bar{R} > R_D$
- Case B
 - Cost of capital \uparrow iff $\bar{R} > R_D$
 - Enforcement ↑ / ~
- Case C (implies $\bar{R} > R_D$)
 - Credit rationing ↑
 - Cost of capital ↑

uction Set-Up Benchmark Models **Equilibrium with Competition** Information Conclusion

Welfare with Direct Competition

 $\Delta \text{Welfare} = -\Delta \text{Credit rationing} - \Delta \text{Cost of capital} + \Delta \text{Enforcement}$

- Case A
 - Cost of capital \uparrow iff $\bar{R} > R_D$
- Case B
 - Cost of capital \uparrow iff $\bar{R} > R_D$
 - Enforcement ↑ / ~
- Case C (implies $\bar{R} > R_D$)
 - Credit rationing ↑
 - Cost of capital ↑

 \star If \bar{R} is sufficiently large, welfare declines unambiguously

duction Set-Up Benchmark Models **Equilibrium with Competition** Information Conclusion

Welfare with Direct Competition

 $\Delta \mathsf{Welfare} = -\Delta \mathsf{Credit} \ \mathsf{rationing} - \Delta \mathsf{Cost} \ \mathsf{of} \ \mathsf{capital} + \Delta \mathsf{Enforcement}$

- Case A
 - Cost of capital \uparrow iff $\bar{R} > R_D$
- Case B
 - Cost of capital \uparrow iff $\bar{R} > R_D$
 - Enforcement ↑ / ~
- Case C (implies $\bar{R} > R_D$)
 - Credit rationing ↑
 - Cost of capital ↑

 \star If \bar{R} is sufficiently large, welfare declines unambiguously

- The platform can acquire information at cost $c \to 0$
 - High signal: P(high revenues) ↑
 - Low signal: P(high revenues) = 0
- Information used to cream-skim
- - Higher interest rates after high signal
- - Smaller rents extracted from enforcement

- The platform can acquire information at cost $c \to 0$
 - High signal: P(high revenues) ↑
 - Low signal: P(high revenues) = 0
- Information used to cream-skim
 - * Banks lend less because of winner's curse
 - * Smaller advantageous-screening rents
- Information used to extract surplus
 - Higher interest rates after high signal
- - Smaller rents extracted from enforcement

- The platform can acquire information at cost $c \to 0$
 - High signal: P(high revenues) ↑
 - Low signal: P(high revenues) = 0
- Information used to cream-skim
 - * Banks lend less because of winner's curse
 - * Smaller advantageous-screening rents
- Information used to extract surplus
 - Higher interest rates after high signal
 - * Banks compete more aggressively
 - ★ Smaller advantageous-screening rents
- - Smaller rents extracted from enforcement

- The platform can acquire information at cost $c \to 0$
 - High signal: P(high revenues) ↑
 - Low signal: P(high revenues) = 0
- Information used to cream-skim
 - * Banks lend less because of winner's curse
 - * Smaller advantageous-screening rents
- Information used to extract surplus
 - Higher interest rates after high signal
 - * Banks compete more aggressively
 - ★ Smaller advantageous-screening rents
- * For some parameters, lower profits with the option to acquire information
 - Smaller rents extracted from enforcement

Concluding Remarks

- ★ The platform controls access to a marketplace
 - Can enforce partial loan repayment

- Benefits from advantageous screening when competing with banks
 - Contracts with different level of enforcement
 - Negative welfare effects

- Ambiguous value of private information
 - May lower the rents the platform extracts from superior enforcement

Concluding Remarks

- ★ The platform controls access to a marketplace
 - Can enforce partial loan repayment

- ★ Benefits from advantageous screening when competing with banks
 - Contracts with different level of enforcement
 - ⋆ Negative welfare effects

- Ambiguous value of private information
 - May lower the rents the platform extracts from superior enforcement

Concluding Remarks

- * The platform controls access to a marketplace
 - Can enforce partial loan repayment

- ★ Benefits from advantageous screening when competing with banks
 - Contracts with different level of enforcement
 - ⋆ Negative welfare effects

- * Ambiguous value of private information
 - May lower the rents the platform extracts from superior enforcement

Thank You!

jl5964@columbia.edu s.pegoraro@nd.edu

The Bank's Objective Function

Profits from borrowing at rate R:

$$L_B(R, m_P, G_P; p) := m_P[pG_P(R)(R - R_D) - (1 - p)R_D] + (1 - m_P)(pR - R_D)$$

- Platform lends w.p. m_P
 - Borrower is good w.p. p
 - Borrows from banks and repay if $R < R_P$, w.p. $G_P(R)$
 - Borrower is bad w.p. 1 p
 - Always borrows from banks and never repays

- Platform does not lend w.p. $1 m_P$
 - Both types borrow from banks
 - Only the good type repays

The Platform's Objective Function

Profits from borrowing at rate R:

$$L_P(R, m_B, G_B; p) := \begin{cases} l_P^0(R, m_B, G_B; p) & \text{if } R \in ((1-f)c_L, (1-2f+\eta)c_L] \\ l_P^1(R, m_B, G_B; p) & \text{if } R > (1-2f+\eta)c_L. \end{cases}$$

- Bad borrower repays the platform if $R \leq (1-2f+\eta)c_L$
- ullet Bad borrower does not repay the platform if $R>(1-2f+\eta)c_L$
- * Discontinuity at $R = (1 2f + \eta)c_L$

The Platform's Profits when $R \leq (1 - 2f + \eta)c_L$

$$I_P^0(R, m_B, G_B; p) := m_B \{ pG_B(R)(R - \bar{R}) + [2pc_H + (1-p)c_L]f \} + (1-m_B) \{ R - \bar{R} + 2[pc_H + (1-p)c_L]f \},$$

- Banks lend w.p. m_R
 - Borrower is good w.p. p
 - Borrows from the platform and repay if $R < R_B$, w.p. $G_B(R)$
 - Pays transaction fees twice
 - Borrower is bad w.p. 1-p
 - Never borrows from the platform
 - Pays transaction fees once
- Banks do not lend w.p. $1 m_B$
 - Both types borrow from the platform
 - Both types repay
 - Both types pay transaction fees twice

The Platform's Profits when $R > (1 - 2f + \eta)c_L$

$$I_{P}^{1}(R, m_{B}, G_{B}; p) := m_{B}pG_{B}(R)(R - \bar{R})$$

$$+ (1 - m_{B})[pR + (1 - p)(\eta - f)c_{L} - \bar{R}]$$

$$+ [2pc_{H} + (1 - p)c_{L}]f,$$

- Banks lend w.p. m_B
 - Borrower is good w.p. p
 - Borrows from the platform and repay if $R \leq R_B$, w.p. $G_B(R)$
 - Borrower is bad w.p. 1-p
 - Never borrows from the platform
- Banks do not lend w.p. $1 m_B$
 - Both types borrow from the platform
 - Good borrower repays the loan
 - Bad borrower repays only repayment fees $(\eta f)c_L$
- In both cases
 - Good type pays transaction fees twice
 - Bad type pays transaction fees once

Definition of Equilibrium

Lending probabilities $(m_P^*, m_B^*) \in [0, 1]^2$ and rate distributions by the platform and the banks F_P^* and F_B^* with supports \mathcal{R}_P^* and \mathcal{R}_B^* such that:

- 1. The platform and competitive banks set rates optimally
- 2. Lenders extend credit optimally

3. Banks are competitive in the lending market; that is, no lending mechanism (F_B, m_B) exists such that it improves the bank's and the good merchant's profits.

Case A

- No credit rationing
 - The platform always lends
 - Banks deny credit with positive probability

- - Platform competes on rates:

Case A

- No credit rationing
 - The platform always lends
 - Banks deny credit with positive probability

- Lenders randomize rate offers
 - Banks lend above their competitive rate: [R_D/p, (1 - f)c_H]
 - Platform competes on rates: $[R_D/p, (1-f)c_H] \cup \{(1-2f+\eta)c_L\}$

Case B

- No credit rationing
 - The platform always lends
 - Banks deny credit with positive probability

- - Bad merchant may repay the

Case B

- No credit rationing
 - The platform always lends
 - Banks deny credit with positive probability

- ★ The platform may offer rates $R_P \leq (1 - 2f + \eta)c_I$
 - Bad merchant may repay the platform in full

Case B

- No credit rationing
 - The platform always lends
 - Banks deny credit with positive probability

- ★ The platform may offer rates $R_P \le (1 2f + \eta)c_I$
 - Bad merchant may repay the platform in full

- More complex price-dispersion equilibrium
 - Discontinuity in the platform's objective function

Case C

★ The platform extracts more rents when banks lend more

Platform's profits $\propto P(\text{banks lend})^1$

- - Platform and banks deny

Case C

 The platform extracts more rents when banks lend more

Platform's profits $\propto P(\text{banks lend})^1$

- Merchants are rationed with positive probability
 - Platform and banks deny credit with positive probabilities
- Lenders randomize rates over $[R_D/p, (1-f)c_H]$

Case C

 The platform extracts more rents when banks lend more

Platform's profits $\propto P(\text{banks lend})^1$

- Merchants are rationed with positive probability
 - Platform and banks deny credit with positive probabilities
- Lenders randomize rates over $[R_D/p, (1-f)c_H]$

